

BMR-P Series Isolated Fast-Switching Programmable Resistor Module

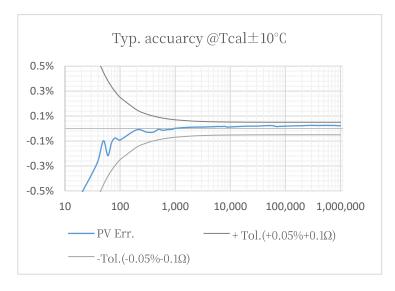
Specification & Manual

The BMR-P series programmable resistor modules utilize Photocoupler relays as switches for the resistor network. The drive circuit is isolated from the output resistor and is capable of switching within 1 ms. The semiconductor switches feature a long service life and operate without oscillation during switching, making BMR-P suitable for applications requiring frequent switching actions and high switching speed.

The BMR-P series covers an output range from 3Ω to $1M\Omega$, featuring a step resolution of approximately 0.1Ω and a maximum rated power of 0.5W (maximum voltage 60V). In terms of accuracy, this series overcomes the drawback of high onresistance in Photocoupler. Class B achieves an initial accuracy of $\pm (0.04\% + 0.1\Omega)$ @Tcal across the entire output range.

The BMR-P Series supports 2-channel output, with channels capable of "synchronous output" of independent resistance values. This enables the convenient configuration of a high-performance digital potentiometer with freely adjustable gain and output impedance.

The BMR-P series supports a wide voltage supply range of 6 to 24V and offers a variety of communication interfaces (isolated RS485, RS232, and CAN). The RS485 interface supports networking with up to 256 nodes.


Additionally, the module housing is designed for industrial applications and supports standard DIN rail mounting.

Features Overview

- True resistance generated by "optocoupler relay-resistor network," passive output
- Dual-channel output, also supports module networking
- Fast response:
 Typical output switching time <1ms
- Smooth relay group switching with no oscillation
- o Wide output range: $3\Omega 1M\Omega$ (approx. 0.1Ω steps)
- High accuracy: 3Ω -1MΩ: ±(0.04%+0.1Ω) (@Tcal±1°C)
- Safety output threshold (user-configurable)
- Optional communication interfaces with userdefined baud rate:
 - Isolated RS232 (for local interference resistance)
 - Isolated RS485 (for remote module networking)
 - Isolated CAN (suitable for automotive industrial networking)
- Standard 35mm DIN rail mounting
- Compact dimensions:
 12.2 (L) × 7.2 (W) × 3.5 (H) cm

Application

- o Industrial automation (testing)
- Sensor simulation
- Sensor calibration
- High-performance programmable potentiometer (dual-channel combination)
- Other applications replacing traditional resistance boxes
- o

Ordering Code (to be continued)

Ordering Code *	Description ^{1,2}			
BMR-P22800-1M-B□	1M-B Class B, dual-ch, 3Ω -1MΩ range, aprox. 0.1Ω steps, initial accuracy $\pm (0.04\%+0.1\Omega)$ @T _{cal} ± 1 °C, T.C $\pm (25\text{ppm}+15\text{m}\Omega/\text{K})$, rated power 0.25W-0.5W (max 60V)			
BMR-P22200-M1-B□	Class B, dual-ch, 3Ω-120kΩ range, aprox. 0.1Ω steps, initial accuracy ±(0.04%+0.1Ω)@T _{cal} ±1°C, T.C ±(25ppm+15mΩ/K), rated power 0.25W-0.5W (max 60V)			
*In ordering code,□=0:RS-232 port; □=1:RS-485 port; □=2: CAN BUS				

- 1 For specific definitions of accuracy, temperature drift, and other parameters, refer to the detailed specifications below.
- The precise output range varies by machine and batch. The minimum output range is typically around 3Ω , with the maximum not exceeding 10Ω .

Terminology and Definitions

T _{cal}	Module internal temperature during calibration (the reading from the built-in
	temperature sensor shall prevail), typically between 23°C to 25°C
Calibration	Ambient temperature fluctuation range: Tcal ±1°C
conditions	Ambient relative humidity: 75% R.H.
	Supply voltage: 12 VDC
	Power supply ripple: Vpp approximately 15 mV
Accuracy (R.D)	Reading accuracy, which is calculated based on the error between the return value (PV) and the actual measured value plus the uncertainty of the reference meter itself.
Initial accuracy	Indicates the accuracy measured at the factory without considering long-term aging factors of Photocoupler Relay and base resistors, under conditions of low load power (<0.05 W) at the output resistance.
SP	SetPoint
PV	Process Value (communication return values, or displayed values). Within the output range, the error typically falls within one step of the corresponding setpoint (SP).
ΔΤ	The difference between the internal module temperature (is read by the module's built-in temperature sensor) and T _{cal} .
R.H	Relative Humidity
Ri	For dual-ch module, R0 represents the output resistance of channel 0, R1 represents the output resistance of channel 1.
T.C	Temperature Coefficient

Specification

Specification			
Items	S	pec.	Remarks
Output resistance			
Class		Class B	
Initial Accuracy		±(0.04% R.D +0.1Ω)@T _{cal} ±1 °C	
T.C		±(25ppm+0.015Ω/K)	
Maximum Range	3Ω -1.2MΩ, custom high-ra	ange (10M) available	
Steps resolution	Approx. $0.1\Omega/1\Omega$, custom available	higher resolution (0.01 Ω)	
SP and PV difference	Typical value < 0.5 steps		@within output range
Max. Voltage	60V		
Max. Current	0.8A		
Rated power	0.25~0.5 W (varies on outp	out, up to 60 VDC)	For details, refer to Communication port return data
Open output	>100ΜΩ		
Relay type	Photocoupler		
Switching time	<1 ms		
Recommended Maximum Operating Frequency	10Hz (new value set every	0.1s)	
Self-heating caused by Photocoupler	<4°C		
Output terminal	2-wire/4-wire output via p	olug-in terminal	
Communication Inte	erface		
Power supply	6V~24VDC, 1W+		Recommended Low- Ripple Power Supply
Power supply terminal	Plug-in terminal		
Communication Interface	Optional isolated RS485, R	S232, or CAN	
RS485/RS232 default configuration	115200 bps, 8, N, 1		
RS485/RS232 User- defined baudrate range	9600-115200 bps		
RS485 max number of nodes	256 nodes		
CAN BUS baudrate	3k-1M bps (default 1Mbps)	
CAN BUS	Standard frame format		
Communication protocol	Private AT instruction set (Private AT instruction set (details below)	

Specifications (Continued)

Additional Functions	Additional Functions				
Built-in temperature sensor	Typ. Accuracy ±2°C				
General spec.					
Operating temperature	-10 °C to 55 °C				
Operating relative humidity	To 80 % R.H non-condensing	Can still be used in high humidity without condensation, but accuracy cannot be guaranteed then.			
Storage temperature	-20 °C to75 °C				
Dimensions	12.2 (L) × 7.2 (W) × 3.5 (H) cm				
Installation	Std. DIN 35mm				
Weight	117 g (including external terminals)				
Warranty	1-year				

Typical characteristics *

^{*} Unless otherwise specified, all tests are based on sample data measured at room temperature and 75% relative humidity. The accuracy values in the table represent relative accuracy relative to the reference meter reading. The accuracy of the reference meter used is better than $\pm 0.01\%$ within the $1M\Omega$ range. When calculating absolute accuracy, the uncertainty of this reference meter should be taken into account.

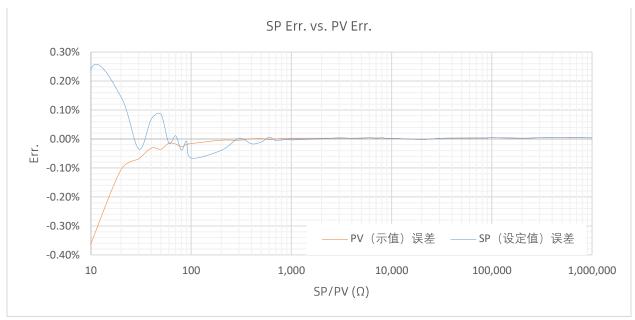


Figure above: Output errors calculated based on SP (Setpoint) and PV (Process Value) respectively. Outputs below $1k\Omega$ show that PV provides a more objective description of actual output resistance; differences between the two become negligible above $1k\Omega$.

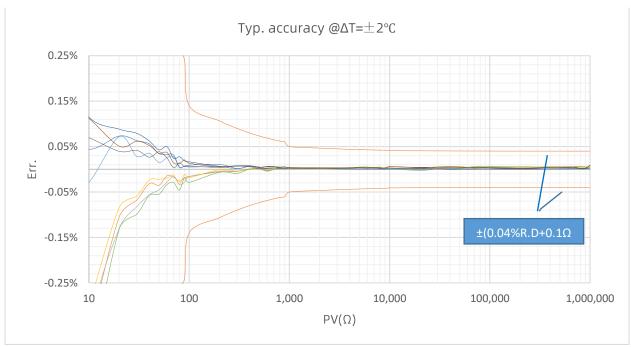


Figure above: Accuracy is based on the aggregated results of testing multiple samples (channels) within a constant-temperature chamber (temperature variation range: Tcal-2°C to Tcal+2°C).

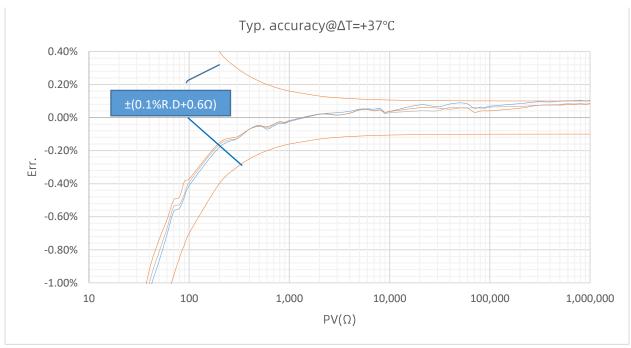
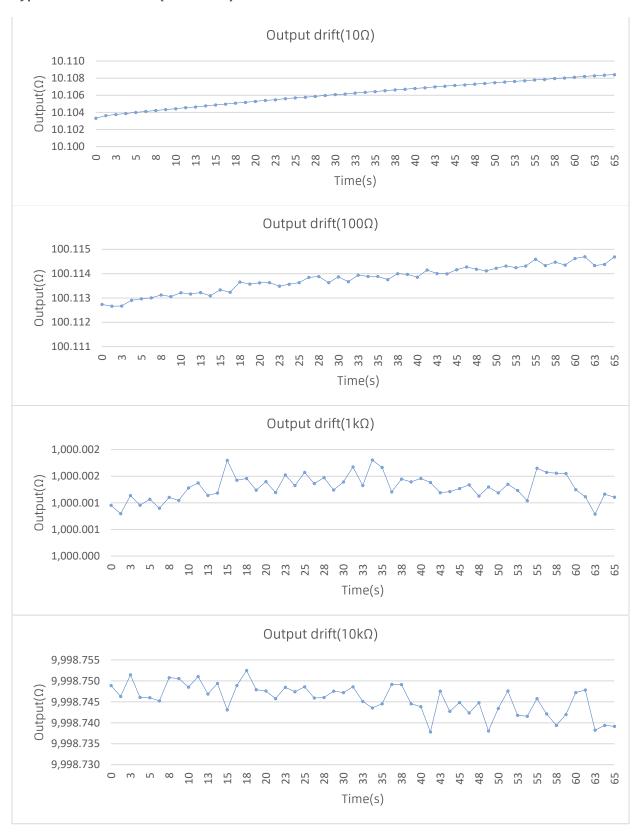
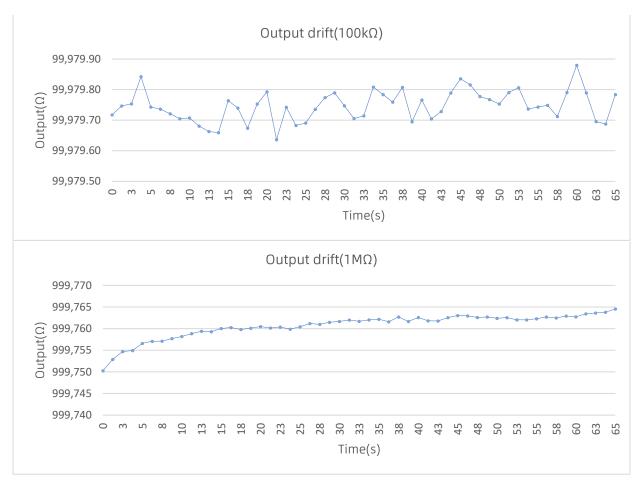
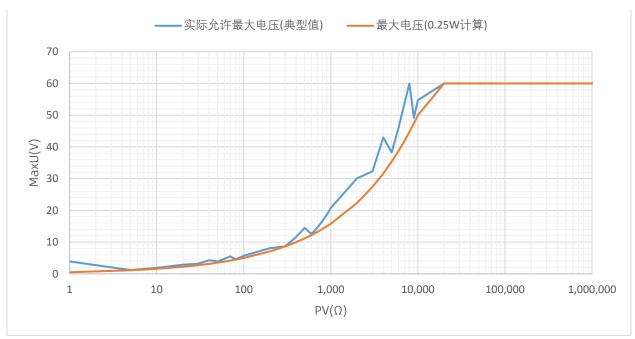




Figure above: Accuracy is based on the aggregated results of testing multiple samples (channels) under Tcal+37°C (60°C) conditions.



Output drift: Due to factors such as optocoupler temperature rise, parasitic capacitance/inductance, measurement instruments, or measurement methods, the measured output resistance typically requires a period to stabilize, which may last several seconds to minutes. This should be considered in high-precision or long-term fixed-value applications (the BMR-L series is recommended for higher-standard applications, as its relays do not generate heat). The test method involves initiating measurement at the instant the new output value appears (t=0) and recording data for approximately 1 minute.

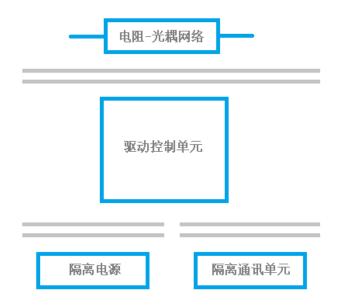


Figure: Output typical switching time ($1k\Omega$ to $2k\Omega$)

Above: The rated power of the BMR-P base resistor is 0.25W. However, for the vast majority of output values (PV), the actual rated power typically ranges between 0.25W and 0.5W. Users may operate based on the actual MaxU value returned via the serial port. For simplicity, the rated voltage can also be uniformly calculated using the formula MaxU = $\sqrt{(PV \times 0.25)}$. Note that the maximum voltage applied across the output resistor must not exceed 60V.

Module System Block Diagram

Working Principle

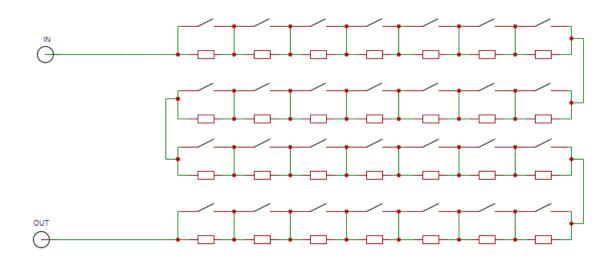
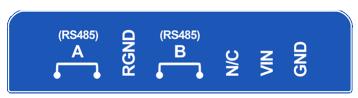



Figure: Relay-Based Resistor Array Principle.

Activating or deactivating specific switch combinations outputs a resistance value close to the set value (switches are open by default during power loss and module startup).

Port Signal Distribution

Above: RS-485 Interface Label

Items	Signal definition	Function	
1	RS485 A*	RS-485 differential signal A	
2	RGND	RS-485 GND (optional)	
3	RS485 B*	RS-485 differential signal B	
4	N/C	No connection	
5	VIN	Power Supply (Positive), 6–24 VDC	
6	GND	Power Supply (Negative)	

^{*} The extra pair of RS485 ports can be terminated with 120Ω resistors or connected to the next module for networking.

Above: RS-232 Interface Label

Items	Signal definition	Function	
1	RS232 TXD	RS-232 TXD	
2	RGND	RS-232 GND	
3	RS232 RXD	RS-232 RXD	
4	N/C	No connection	
5	VIN	Power Supply (Positive), 6-24 VDC	
6	GND	Power Supply (Negative)	

Above: CAN Interface Label

Items	Signal definition	Function	
1	CAN_H*	CAN H	
2	RGND	CAN GND (optional)	
3	CAN_L*	CAN L	
4	N/C	No connection	
5	VIN	Power Supply (Positive), 6-24 VDC	
6	GND	Power Supply (Negative)	

^{*} The extra pair of CAN_H and CAN_L pins can be connected to the next module to form a network.

Important Notice for Use

Warning: Electric Shock Hazard!

This product's resistor output terminals support voltages up to 60V DC/AC. When operating above the 36V safety voltage threshold, ensure proper protective measures are in place. Do not touch the output terminals to prevent injury to personnel or damage to equipment.

Operating Temperature and Humidity

Use within the recommended temperature and humidity ranges. Excessive temperatures may cause abnormal operation or damage to this module, as well as reduce the rated power of the output resistor. High humidity or condensation may affect the accuracy of the output resistor and shorten the module's service life.

Wiring

Please correctly distinguish between the power supply signal input terminal and the resistor output terminal. Wire according to the pin information on the label. When using two wires, to prevent output resistance drift caused by frequent plugging and unplugging, tighten the fixing screw (already tightened at the factory). Frequent disassembly of the resistor output terminal is not recommended.

Installation

The BMR-P supports DIN 35mm rails.

Power Supply

Supply this module with a 6-24VDC power source rated at 1W or higher. The module incorporates internal reverse polarity protection. Although the module employs a power supply IC with high PSRR, it is recommended to use a low-ripple power supply to minimize output resistance noise.

Testing

During power loss or after power-up, the module defaults to outputting its maximum value.

The four-wire (Kelvin) connection method is recommended for verifying module output accuracy; two-wire connections typically introduce an offset value, requiring users to compensate for external wire resistance in their applications.

During operation, the optocoupler generates heat. Single-channel use causes a worst-case temperature rise of approximately 2°C, while simultaneous dual-channel operation causes a worst-case rise of approximately 4°C. For short-term measurements, temperature rise is the primary cause of output resistance drift, but initial accuracy already accounts for this factor.

Networking

The AT command set of this module enables the host to communicate individually with any module on the bus. Both RS-485 and CAN communication interfaces support networking. A maximum of 256 nodes can be connected to a single RS-485 bus.

Typically, RS-232 can only control a single module. If required, after networking modules via RS-485, users may add RS-232-to-RS-485 converters to enable RS-232 control of multiple modules. If the host does not require module feedback, all modules' RXD pins can be connected to the host's TXD pin for RS-232 networking.

Communication via Modbus Protocol (or Other Protocols)

This module employs a private string protocol that is not strictly compatible with the Modbus protocol.

However, users can embed this module's commands within the Modbus data segment: treat string commands as "data" within the Modbus data segment, encapsulate them correctly, and transmit them over the Modbus network. This module can properly parse commands encapsulated using the Modbus protocol. Similarly, this method can be extended to other comparable protocols.

Device Address	Function Code	Data Segment	CRC
(Any idle address on the bus)	,	Start Address + Number of	CRC
	Registers	Registers + Data (RM55x	
		String Instruction)	

For example, to set the output to 123.4 Ω (command: "AT+RES.SP=123.4 λ "), the encapsulation is as follows:

Device	Functio	Start	Number of Registers	Registers Value (HEX)	CRC(HEX)
Address	n Code	Address	(UINT16)		
01H	10H	00H	08H (Half the length of	41 54 2B 52 45 53 2E 53 50 3D	77 1F
			the AT command)	31 32 33 2E 34 5C	
				(AT+RES.SP=123.4\)	

Send the command "01 10 00 08 $\frac{41}{54}$ 54 2B 52 45 53 2E 53 50 3D 31 32 33 2E 34 5C 77 1F" via the Modbus bus to configure the module's output to 123.4 Ω .

Feature Highlights

Users can define a "minimum output limit value" (e.g., using "AT+RES.RLIMIT=100\" to clamp R0's minimum output to 100Ω) to prevent accidental configuration below this threshold, which could cause output resistor overload. Setting this threshold to 0 disables output limiting.

Multi-channel can "Synchronized Output", i.e. Modules allow control of all channels to output identical or different resistance values in "synchronized" mode via corresponding commands. This proves particularly useful in scenarios such as connecting two channels in series to form a high-performance potentiometer.

AT Command Set

	Configuration				
Default setting	115,200 bps, Data bits 8, Parity bit None, Stop bits 1				
Command ending sign	'\r' or '\n' or char'/' or char '\'	Note: Each command must end with a command ending sign to be considered a complete command.			

AT Command Set Introduction

The AT command set for this module is categorized into several types: "RO Basic Commands," "Multi-Channel Extension Commands," "User-Defined Configuration Commands," "Module Information Query Commands," and "Networking Extension Commands."

- R0 Basic Commands
 - For the configuration of the R0 (Channel 0) output resistor
- Multi-channel extension command:

Append the channel number after the "AT+RES" command. For example, "AT+RES1" applies settings to R1 (Channel 1). Additionally, the "AT+RESX" command enables "synchronous configuration" of both R0 and R1.

- User-defined configuration commands
 - These commands apply to the entire module, modifying communication baud rates, user-defined US/N settings, etc.
- Module Information Query Command
 Module Electronic Tag
- Network Expansion Command

In networked applications, the module's own S/N serves as its ID for communication with the host. The host can add "@<S/N>" at the end of any command to control a specific module individually. The mechanism is as follows: If <S/N> matches the module's actual serial number, the command is executed and acknowledged; otherwise, the command is ignored. Commands without "@<S/N>" are always executed and acknowledged by the module, enabling broadcast functionality. Additionally, users may define a custom serial number (User S/N, or US/N) to replace the default S/N as the module ID.

AT Command Table

No.	Function	CMD/Solution	Default Unit	Example/Remarks			
(1 R0 Basic Commands						
1	Set output	AT+RES.SP= <float string=""></float>	Ω	TX: AT+RES.SP=100/ RX: +OK. +R0 .SP(Ohm)=100.00 .PV(Ohm)=99.99 .UMax(V)=5.7 .RLimit(Ohm)=0.00 +Temp(C)=33.9			
2	Set output(INC)	AT+RES.SP+= <float string=""></float>	Ω	TX: AT+RES.SP+=100/ RX: +OK. +R0 .SP(Ohm)=200.00 .PV(Ohm)=199.94 			
3	Set output(DEC)	AT+RES.SP-= <float string=""></float>	Ω	TX: AT+RES.SP-=100/ RX: +OK. +R0 .SP(Ohm)=100.00 .PV(Ohm)=99.99			
4	Get minimum output limit value	AT+RES.RLIMIT?	Ω	TX: AT+RES.RLIMIT?/ RX: +RES.RLIMIT=0.0			
5	Set minimum output limit value	AT+RES.RLIMIT= <float string=""></float>	Ω	TX: AT+RES.RLIMIT=500/ RX: +OK. +R0 .SP(Ohm)=100.00 .PV(Ohm)=500.00 .UMax(V)=14.5 .RLimit(Ohm)=500.00 +Temp(C)=34.6 Note: The above command sets the minimum output RLIMIT to 500. At this point, even though SP=100, PV now follows RLIMIT.			
6	Get built-in temperature sensor value	AT+RES.TEMP?	°C	TX: AT+ RES.TEMP?/ RX: + RES.TEMP=34.1			
7	Get detailed information about the output resistance	AT+RES.INFO?		TX: AT+RES.INFO?/ RX: : +R0.INFO: .SP(Ohm)=100.00 .PV(Ohm)=500.00 .UMax(V)=14.5 .RLimit(Ohm)=500.00 .Temp(C)=34.8 .TCal(C)=24.3			

	②Multi-Channel Extension Commands				
8	Extend above basic commands to Ri (channel i)	AT+RES <ch> Where <ch>=0,1</ch></ch>		TX: AT+RES1.SP=123.4?/ RX: +OK. +R1 .SP(Ohm)=123.40 .PV(Ohm)=123.41 The above command assigns a value to R1 (Channel 1). The same applies to other channels.	
9	Simultaneously assign values to all channels, with each channel outputting "synchronously."	AT+RESX.SP= <a>, Where <a> or may be omitted (for example, "AT+RESX.SP=,"), in which case the default channel retains its original output.	Ω	TX: AT+RESX.SP=123,456/ RX: +OK. +R0 .SP(Ohm)=123.00 .PV(Ohm)=122.97 +R1 .SP(Ohm)=456.00 .PV(Ohm)=455.99	
	4 User-defined confi	iguration commands			
10	Set baudrate	AT+DEV.BAUDRATE= <baud> <baud> valid range is: 9600~115200 (9600, 14400, 19200, 38400, 43000, 57600, 76800 and 115200)</baud></baud>	bps	TX: AT+DEV.BAUDRATE=9600/ RX: +ok Setup take effect immediately	
11	Set User-Defined Serial Number (US/N)	AT+DEV.USN= <string> <string> is 8 Byte string</string></string>		TX: AT+DEV.USN=00000001/ RX: +ok	
12	Get USN.EN status (Enabled/Disabled)	AT+DEV.USN.EN?		TX: AT+DEV.USN.EN?/ RX: +DEV.USN.EN=0	
13	Enable U/SN to replace SN	AT+DEV.USN.EN=1		Replace S/N with US/N as the ID for network communication.	
14	Disable U/SN to replace SN	AT+DEV.USN.EN=0		Restore S/N as the ID for network communication	
	CAN BUS configuration	(TBD)			
	5 Module Information	on Query Command			
15	Get device info.	AT+DEV.INFO?		TX: AT+DEV.INFO?/ RX: +DEV.INFO: .SN=00000000 .USN(EN=0)=00000001 .TYPE=BMR-P22800-1M-B1	

⑤Network Expansion Command			
16	In networked applications, to control a specific device by S/N	When USN.EN=0, append "@ <s n="">" to the end of the above commands to control the corresponding module.</s>	TX: AT+DEV.USN.EN?/ RX: +DEV.USN.EN=0 TX: AT+DEV.SN?/ RX: +DEV.SN=00000000 TX: AT+RES1.SP=789@000000000/ RX: +OK.@00000000 +R1 .SP(Ohm)=789.00 .PV(Ohm)=788.93
17	In networked applications, to control a specific device by US/N	When USN.EN=1, append "@ <us n="">" to the end of the above commands to control the corresponding module.</us>	TX: AT+DEV.USN=12345678/ RX: +OK. TX: AT+DEV.USN.EN=1/ RX: +OK. TX: AT+RES1.SP=123@12345678/ RX: +OK.@ 12345678 +R1 .SP(Ohm)=123.00 .PV(Ohm)=123.03

Application Examples

Example 1. Config single-device output

- Connect host device to slave device (the BMR-P module)
- Send "AT+RES.SP=123.4/" or "AT+RESO.SP=123.4/" to set the output of R0 (Channel 0) to 123.4Ω.
- Send "AT+RES1.SP=432.1/" to set the output of R1 (Channel 1) to 432.1 Ω .
- Send "AT+RESX.SP=111.1,222.2/" to set the R0 and R1 outputs to 111.1Ω and 222.2Ω respectively; both channels will switch synchronously.

Example 2. Using S/N as IDs for RS-485 Networking

- Connect host device to slave devices (the BMR-P modules) via RS-485
- Send "AT+DEV.USN.EN=0/" to enable all slave devices to use the default S/N for network communication.
- Send "AT+RES.SP=123.4@00000001/", #00000001's R0 output 123.4Ω and acknowledge.
- Send "AT+RES1.SP=432.1@00000002/", #00000002's R1 output 432.1Ω and acknowledge.
- Send "AT+RES1.SP=100@002/". Due to an invalid serial number (the leading "0" cannot be omitted), no slave device responded.
- Send "AT+RESX.SP=100,200/" to set all slave devices' R0 to 100Ω and R1 to 200Ω ; all slaves should respond (though this causes garbled response data).

Example 3. Using US/N as IDs for RS-485 Networking

- Connect to Slave 1 individually. Send "AT+DEV.USN=12345678/" to set its US/N to 12345678.
 Send "AT+DEV.USN.EN=1/" to enable US/N to replace the factory default S/N for this slave.
- Connect to slave device 2 individually. Send "AT+DEV.USN=87654321/" to set its US/N to 87654321. Send "AT+DEV.USN.EN=1/" to enable the US/N to replace the slave's factory default S/N
- Refer to Example 2 for network communication using new US/N codes (12345678 and 8765432) for individual control.

Example 4. Control via Python

```
import serial
#Typically, a USB-to-RS232/485 module is used for debugging with the module. The USB adapter module
maps to a COM port on the computer, here we assume it's COM6
ser = serial.Serial('COM6',115200,timeout=1,parity=serial.PARITY_NONE)
#Config COM port
ser.write(b'AT+RES.SP=10\r\n')
# Write the AT command, here setting the resistance value to 10.
response=ser.readall().decode()
print(response)
ser.close()
#Close COM6
```

Example 5. CAN Bus User Guide

(TBD)

Eastwood Instruments

<mark>- Always do better.</mark>

More info. Please visit:

www.eastwood.tech

©2025 Eastwood Instruments (Huizhou) Ltd.

This document is subject to change without notice.

This document was written and published by Channing

Modification of this document is prohibited without written permission.